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What is Partial-Order Planning? 
 
For our case, we'll explore partial-order planning in a classical planning environment.  Such an 
environment is fully observable (as opposed to only partially so) and deterministic (as opposed to 
having randomness, or being stochastic).  Further, the space is finite and static in nature - it does 
not change in the middle of deliberation.  Finally, the environment is "discrete (in time, action, 
objects, and effects)," as opposed to continuous along any of these axes (Russell, 375.  For 
further reading on the characteristics of environments, see Russell pages 41-42). 
 
To understand what partial-order planning entails, it might be helpful to know what planning is, 
and then describe totally ordered planning.  To that end, planning is "the task of coming up with 
a sequence of actions that will achieve a goal" (Russell, 375).  That is a fairly straightforward - 
exactly as we would expect if we weren't speaking of computers and programs.   
 
An example is simple: given a set of actions I can perform, which ones do I choose (and in what 
order should I apply them) in order to reach my goal?  I've got to get to work this morning - what 
should I do to get there?  I might need to wake up, turn off the alarm, shower, take off my wet 
pajamas and put on something suitable for doing business, and so on, until I reach work in the 
morning (or, afternoon if it was a late night).  However, we wouldn't consider having our agent 
perform the actual driving of the car in a classical environment.  This is because in doing so, our 
environment loses several of the characteristics we laid forth above - chief among these are that 
the new environment would become stochastic and continuous. 
 
There are several types of algorithms that allow us to construct a plan.  For examples, we briefly 
examine progression planning, regression planning, and our main topic, partial-order planning.  
Progression planning is done with a forward state-space search, which is to say that, "we start in 
the problem's initial state [and consider] sequences of actions until we find a sequence that 
reaches a goal state" (Russell, 383).  This can pose major performance problems because it 
considers even completely irrelevant actions.  As you might guess from its name, regression 
planning is the opposite - it works backwards from the goal state.  This removes the problems 
associated with examining irrelevant actions, but as Russell notes, it is not without its problems: 
oftentimes it is not "obvious how to generate a description of the possible predecessors of the set 
of goal states" (Russell, 384). 
 
What distinguishes partial-order planning from the other two is all in its name - it is not totally 
ordered as we see in progression and regression planning.  Instead, partial-order planning enables 
us to "take advantage of problem decomposition."   The algorithm "works on several subgoals 
independently, solves them with several subplans, then combines the subplans" (Russell, 387).  
In addition, Russell notes that, "such an approach also has the advantage of flexibility in the 
order in which it constructs the plan.  That is, the planner can work on 'obvious' or 'important' 
decisions first, rather than being forced to work on steps in chronological order."   
   
We can see a similar phenomenon in application design - we may not choose to work in any 
chronological order, but instead work on the parts to construct the whole.  Whereas some of the 
most important design decisions are often made at the beginning of a project, when we know the 



least about it, the prudent designer may choose to work on more obvious decisions, or decide to 
choose to work on the most important one at the time. 
 
 
Selected History of Partial Order Planning and its Implementations 
 
It was apparent as far back as 1975 that "linear planning" (or totally ordered planning, as 
described above) was not sufficient.  Russell and Norvig relay the story of Allen Brown's 
experiment: that it could not solve simple problems such as the Sussman anomaly, where given 3 
blocks labeled A, B, and C, with block B on the table and C on top of A which is on the table, 
get to the goal state of A on top of B on top of C (Russell, 410, 414) (See Figure 1).  Around that 
time, as part of his Ph.D., Austin Tate released a paper which described INTERPLAN, a system 
to solve the problem of interleaving shown by Brown using Sussman's HACKER program (the 
Sussman Anomaly) (Tate [A] / Russell 410).   
 
Shortly thereafter, Earl D. Sacerdoti released his paper, "The Nonlinear Nature of Plans" which 
presented a new data structure to represent plans and gave a glimpse of the first partial order 
planners, Nets Of Action Hierarchies (NOAH) (and compared that to INTERPLAN, among 
others) (Sacerdoti, 8). 

 

 
Figure 1.  The Sussman Anomaly. 

 
Sacerdoti begins by acknowledging that, "we usually think of plans as linear sequences of 
actions … because plans are usually executed one step at a time."  However, he observed, the 
"plans themselves are not constrained by limitations of linearity."  Because of this, a new 
structure is needed, which he calls a "procedural net," that would represent "a plan as a partial 
ordering of actions with respect to time" (Sacerdoti, 1).  He backs up his assertion showing the 
famous Sussman anomaly (described above), and moves on to describe procedural nets and 
NOAH itself. 
 
Procedural nets are networks of four different types of nodes (GOAL, PHANTOM, SPLIT, and 
JOIN) and each node represents an action.  The nodes are then linked together to form plans.   
GOAL nodes, clearly, represent a goal that should be achieved.  PHANTOM nodes "represent 
goals that should already be true at the time they are encountered."   And, as one might imagine, 
SPLIT nodes represent splits in the plan, while JOIN nodes represent forks that are coming to an 
end.  Finally, as it is implemented, each of the nodes has a pointer to some code (also known as a 
closure, lambda expression, or anonymous function) (Sacerdoti, 2).   
 
NOAH uses that structure to represent plans, and a "generic" domain specific language called 
SOUP (Semantics of a Users' Problem) to give the system knowledge about the task domain 
(Sacerdoti, 2).   To clarify, I call it generic here because it is suitable for describing problems in 
many domains, but it is specific in that its sole purpose is to describe problems.   



 
To create a new plan, first give NOAH a goal to achieve and tell it about the problem with 
SOUP.  Then it builds a procedural net with only a goal node, which contains a "list of all 
relevant SOUP functions as its body."  Finally, run the planning algorithm.  The planning 
algorithm is described as (quoting Sacerdoti, 3): 
 

1) Simulate the most detailed plan in the procedural net.  This will have the effect of producing 
a new, more detailed plan. 

2) Criticize the new plan, performing any necessary reordering or elimination of redundant 
operations. 

3) Go to Step 1.  
(Sacerdoti, 3) 
 

Step one is performed in effect by calling the anonymous function pointed to by the node.  Step 
two runs the plan against several critics, namely "Resolve Conflicts," "Use Existing Objects," 
and "Eliminate Redundant Preconditions," which all perform the actions one would expect from 
knowing their names (Sacerdoti, 4). 
 
After Sacerdoti's release of NOAH, Tate created a new partial order planner dubbed NONLIN.  
From Sacerdoti, he recognizes "that ordering constraints should only be imposed between the 
actions comprising a plan if these are necessary for the achievement of the overall purpose of the 
plan" and bases his work upon it (Tate [B], 889).  On the other hand, Tate realized the need for 
NONLIN because  
 

[NOAH] still had to make choices as to the order that actions were to be placed-in a plan to 
correct for interactions.  NOAH made this choice in one particular way. It did not keep any 
backtrack choice points, so this decision, once made, was irreversible.  This leads to an 
incompleteness of the search space which can render some simple block pushing tasks 
unachieveable (sic) by NOAH… NONLIN is capable of correcting for an interaction by 
suggesting two orderings (which are sufficient to ensure the incompleteness of NOAH mentioned 
above is avoided…). (Tate [B], 889) 

 
Additionally, Tate said, "Other operations performed by NOAH deterministically … should also 
be considered as choice points" and gives two examples where "if such decisions cannot be 
undone, some problems are unsolvable."  Of course, NONLIN fixed these problems (Tate [B], 
889). 
 
As David Chapman noted in 1985, "planners of the most promising ('nonlinear') sort have been 
complicated, heuristic, ill-defined AI programs, without clear conditions under which they 
work."  And since the time of NOAH, INTERPLAN, and NONLIN (and others I've left out for 
space reasons), there have been various improvements in the realm of partial-order planning.  
Chapman's program, TWEAK, is one of them, and was followed by the UCPOP and RePOP  
planners. 
 
Chapman said that he "decided to copy exactly" Sacerdoti's work on NOAH in implementing his 
own planner, but he struggled to make it work (and TWEAK was the result of it when he did 
finally get it to work).  In explaining the reason for publishing his work on TWEAK, Chapman 
quotes Sacerdoti who said NOAH's "basic operations" (Chapman, 1) "were developed in an ad 



hoc fashion.  No attempt has been made to justify the transformations that they perform, or to 
enable them to generate all transformations."  (Sacerdoti, quoted in Chapman, 1) He then goes on 
to compare what he has done with Sacerdoti's work to the longstanding AI varieties of "scruffy" 
versus "neat."  In general, the "scruffies" just want to try solutions and figure out what seems to 
work, and tolerate less mathematical rigor and proof than the "neats" (Russell, 25).   
 
In essence, TWEAK was Chapman's successful attempt at formalizing the "theory about the 
ways in which interacting subgoals can be dealt with" (Sacerdoti, quoted in Chapman, 1), or 
formalizing partial-order planning. 
 
Chapman called TWEAK "a rigorous mathematical reconstruction of previous nonlinear 
planners," and "an implemented, running program," which he described and proved correct in his 
paper.  He was right:  eighteen years later Russell and Norvig said his work "led to what 
arguably the first simple and readable description of a complete partial-order planner," which 
was incarnated as SNLP (Russell, 410) (on which Russell and Norvig base the POP in their 
book). 
 
After SNLP came UCPOP in 1992 from Daniel Weld (who also was an author of SNLP) and J. 
Scott Penberthy.  As the title states, it is "a sound, complete, partial order planner for ADL." 
(ADL is a more advanced way to represent problems, Action Description Language).   Their 
desire to create UCPOP stemmed from two problems they found with existing research into POP 
algorithms.   The first hearkens back to the scruffies vs. neats debate:  Many researchers "looked 
at formal characteristics of languages for describing change," as others built "actual planners, 
often losing a precise understanding of their programs in a forest of pragmatic choices" 
(Penberthy, 1).  Further, the very few that had "complete algorithms" (emphasis added) either 
only implemented "the restrictive STRIPS representation" of problems (citing TWEAK and 
SNLP), or represented "plans as totally ordered sequences of actions" (Penberthy, 1). 
 
Penberthy and Weld described UCPOP as "a theorem prover" at its heart.  The algorithm itself 
requires three parameters:  a plan, the set of goals that remain, and a set of actions.  The goals are 
expressed as a tuple with two elements: a precondition and a step in the plan (Penberthy 6-7).  
An overview of the algorithm can be described as follows: 
 

1) If the set of goal states is empty, return the plan (reporting "success"). 
2) Select a goal from the set of goals.  If there is an invalid link that makes the plan 

impossible, exit, reporting failure. 
3) Choose an operator 
4) Generate subgoals 
5) Protect against threats that may "cause the undoing of a needed goal if that step is done at 

the wrong time" (Dyer). 
6) Recursively call the algorithm if the plan is not inconsistent. 

(Penberthy, 6) 
 
Although UCPOP was novel for its time, a visit today to its website (maintained by the authors at 
the University of Washington) shows it is quite outdated.  The authors note, "UCPOP is an aging 
system - we recommend Sensory Graphplan (SGP) instead. SGP handles a superset of UCPOP 



functionality and is much, much faster" (Weld).  On the other hand, research by XuanLong 
Nguyen and Subbarao Kambhampati in 2000 has shown that quite a few improvements can be 
made to UCPOP in particular, and partial-order planning in general.   
 
Nguyen and Kambhampati argue that "the prevailing pessimism about the scalability of partial 
order planning (POP) algorithms" is perhaps unwarranted (Nguyen, 1).  The pair appear to regret 
that research on POP algorithms seemed to stop (around 5 years prior) and make that point that 
advances in "heuristic state space planners … and CSP-based planners" like Graphplan are 
perhaps "(mis)interpreted as establishing the supremacy of state space and CSP-based 
approaches over" those of the POP variety (Nguyen, 1).   
 
As evidence of their claim, they created RePOP, which is a partial-order planner based on 
UCPOP.  But the value of RePOP lies in the authors' "key insight … that the techniques 
responsible for the efficiency of the currently successful planners … can also be adapted to 
dramatically improve the efficiency of the POP algorithm" (Nguyen, 1). 
 
The techniques they applied to RePOP that other strategies had applied, "distance based 
heuristics, disjunctive representations for planning constraints and reachability analysis," led to 
outstanding results in "several 'parallel planning' domains" (Nguyen, 6).  In fact, since in general 
partial ordered planners are more flexible than their CSP counterparts, they obtained greater 
flexibility than Graphplan, while also outperforming it in most of their experiments (Nguyen, 5-
6).  The performance increase wasn't slight, however - in one problem that RePOP took less than 
3 seconds to solve, Graphplan labored for 47 minutes.  On average, when GraphPlan could solve 
a problem within 3 hours or without using all 250 MB of memory, it still took around 10 times 
longer than RePOP to find a solution (Nguyen, 5). 
 
The systems described above have a common link in that they are all focused on generic 
problems.  However, it should be noted that in some domains, such as medicine, planners of 
these sorts do not tend to work well. As a consequence, great improvements – in performance 
and in accuracy – can be made by building a planner that can be supplemented with domain-
specific information (Miksch).  Despite the interesting nature of such systems, covering planners 
of that sort is outside the scope of this paper, and I now turn to the second task of this report – 
building a partial order planner in Ruby. 
 
Constructing a POP Domain Specific Language in Ruby 
 
Our goal is to give commands to the partial order planner, telling it what the goal is, the initial 
state (if it exists), and actions it can perform.  The actions contain the name of the action, any 
preconditions that must be fulfilled before that action can be performed, and a set of effects the 
action has on the world state.  After giving this information to the planner, it should output a plan 
on demand if one exists. 
 
For simplicity's sake, I've used a STRIPS-like notation, without the complexity of existentially or 
universally quantified variables, among other simplifications.  Further, only one possible plan is 
returned, rather than attempting to find all plans.  The one returned is not guaranteed to be 
optimal, though (inadequate) tests have shown that it is correct.  Plans are to improve these 



limitations in the future, moving to a less restrictive ADL syntax, and adding support for 
returning multiple plans.   
 
In the meantime, the first task is to allow a user to enter commands in a syntax that looks like: 
          
 
PlanName("Put on Shoes") 
Goal(:RightShoeOn ^ :LeftShoeOn) 
 
Action(:RightShoe, EFFECT => :RightShoeOn, PRECOND => :RightSockOn) 
Action(:RightSock, EFFECT => :RightSockOn) 
Action(:LeftShoe, EFFECT => :LeftShoeOn, PRECOND => :LeftSockOn) 
Action(:LeftSock, EFFECT => :LeftSockOn) 
 

Code Sample 1 

 
Also, it should allow function-like notation, such as: 
 
 
PlanName("Change Tire") 
Init(At(:Flat,:Axle) ^ At(:Spare,:Trunk)) 
Goal(At(:Spare,:Axle)) 
 
Action(Remove(:Spare,:Trunk),  
       PRECOND => At(:Spare,:Trunk),  
  EFFECT => NotAt(:Spare,:Trunk) ^ At(:Spare,:Ground)) 
Action(Remove(:Flat,:Axle),  
       PRECOND => At(:Flat,:Axle),  
  EFFECT => NotAt(:Flat,:Axle) ^ At(:Flat,:Ground)) 
Action(PutOn(:Spare,:Axle),  
       PRECOND => At(:Spare,:Ground) ^ NotAt(:Flat,:Axle),  
  EFFECT => NotAt(:Spare,:Ground) ^ At(:Spare,:Axle)) 
Action(:LeaveOvernight,  
  EFFECT => NotAt(:Spare, :Ground) ^ NotAt(:Spare,:Axle) ^      
       NotAt(:Spare,:Trunk) ^ NotAt(:Flat,:Ground) ^  
       NotAt(:Flat,:Axle)) 
 
Code Sample 2 

  
The domain described in Code Sample 1 should produce a plan such as:  LeftSockà 
LeftShoeà RightSock à RightShoe and RightSockà LeftSockà LeftShoeà 
RightShoe.  As one can surmise from looking at the domain as it is written, any plan where the 
socks are on before the shoes is sufficient.  
 
On the other hand, the domain given in Code Sample 2 should render plans like 
Remove(Flat,Axle) à Remove(Spare,Trunk) à PutOn(Spare,Axle), switching 
the first two actions depending on which it decides to do first (since either one would work).  
 



Implementing (or allowing) such syntax in Ruby turns out to be simple.  To get the conjunction 
operator ^, we simply define a module with ^ as a method, and include that module in Ruby's 
String, Symbol, and Array classes, since we'll be using each of these as symbols in our "new" 
language (See Code Sample 3).   
 
 
module Logic 
 def ^(condition) 
  [self, condition] 
 end  
end 
 
#modify the symbol class to include the ^ operation 
class Symbol 
 include Logic 
end 
#modify the array class to include the ^ operation 
class Array 
 include Logic 
end 
 
#modify the string class to include the ^ operation 
class String 
 include Logic 
end 
 

Code Sample 3 

 
Next, we need to allow the use of function-style symbols, such as Remove(:Spare,:Trunk).  As 
with most things in Ruby, this is also simple.  We just use the method_missing method in our 
module: 
 
 
# when the user enters a function, turn it into an action 
def method_missing(method_id, *args) 
 symbol_name = "#{method_id}(" 
 args.each { |arg| symbol_name += arg.to_s + "," } 
 symbol_name[0,symbol_name.length-1] + ")" 
end 
 
Code Sample 4 

 
We now have the ability to use the syntax we laid forth in Code Samples 1 and 2 to define our 
problems that need planning.  All that remains are to implement the functions in our "language" 
that allow us to define the problem domain, and an algorithm to solve for plans. 
 
To do so, first we initialize the start state with an Init() function that simply stores the 
conditions it is passed.  Similarly, the goal state and initial open preconditions are stored into 



member variables as they are passed via the Goal() method.  Finally, actions are constructed 
from a name and a hash with keys PRECOND and EFFECT (See Code Sample 5). 
 
 
#constants to use to store hash for precondition and effect  
#(only for purposes of keeping the DSL looking close to the original) 
PRECOND = :precondition 
EFFECT = :effect  
 
#store the start-state conditions  
def Init(conditions) 
 @start_state = conditions 
end 
alias init Init 
 
#store the goal defined by the user 
def Goal(conditions) 
 @goal = conditions 
 @open_preconditions = @goal 
end 
alias goal Goal 
 
# store actions defined by the user  
def Action(name, precondition_effect) 
 action= ["name" => name,  
             "precondition" => precondition_effect[PRECOND],  
             "effect" => precondition_effect[EFFECT]] 
 @actions = [] if !@actions 
 @actions = @actions + action  
end 
alias action Action 
 

Code Sample 5 

 
Finally, we come to the meat of the problem, the partial-order planning algorithm.  The 
algorithm itself follows a fairly simple path: 
 

1) From the list of open preconditions, choose one. 
2) Find an action whose effect is the same as the precondition we chose and add it to the 

plan. 
3) Add to the list of preconditions any requirements for that action. 
4) Remove from the list of preconditions any that match the effects for the chosen action. 
5) Repeat steps 1-4 until the set of open preconditions is empty, or no action that satisfies a 

precondition can be found.   
6) Remove any preconditions from the open list that match the starting state. 
7) If the set of open preconditions is empty, return the plan.  Otherwise, fail. 

 
The algorithm in Ruby follows: 
 
 



 
def make_plan 
 action_plan = [] 
 fail = false 
 while (@open_preconditions.size > 0 && !fail) 
  #randomize the open_preconditions and actions to show order     
            #doesn't matter 
  @open_preconditions=@open_preconditions.sort_by { rand } 
     
  #find an action that solves it the first open precondition 
  attempted_precondition = @open_preconditions.shift 
  action_to_take = find_action_for attempted_precondition 
   
  if (action_to_take != nil) 
   add_preconditions_for action_to_take 
   remove_preconditions_fulfilled_by action_to_take 
   #add the action to the plan 
   action_plan.push(action_to_take["name"]) 
  else 
   #put the precondition back on the open_preconditions, since  
                  #it wasn't fulfilled by an action 
   fail = true if @open_preconditions.size == 0 
   @open_preconditions.push attempted_precondition  
   remove_preconditions_matching_start_state 
   fail = false if @open_preconditions.size == 0 
  end 
 end 
 if @open_preconditions.size > 0 || fail 
  puts "There appears to be no plan that satisfies the problem." 
  puts "Open preconditions: "  
  puts @open_preconditions 
  action_plan = [] 
 end 
 sanitize_plan(action_plan.reverse) 
end 
 
 
Most of the code is aptly named where there are functions (see the appendix for the complete 
code), but two issues in this algorithm immediately jump to the forefront.  The first is: why aren't 
we also randomizing the list of actions?  Clearly, if there are two actions that satisfy the same 
precondition, the first one encountered will always win.  This was done because randomizing the 
list of actions (if two or more satisfy the same precondition) has the potential to cause a loop of 
preconditions/effects, and thus cause incorrect plans to be generated.  Since no attempt was made 
at finding the optimal plan, I didn't want to clutter the code by fixing this and make it harder to 
follow.  Correct plans are still generated, and a future version meant for more demanding 
environments would indeed allow a random action to be chosen. 
 
The second issue that is not immediately clear begs the question: "just what is that 
sanitize_plan method doing there?"  Some actions may add duplicate preconditions to the set 
of open preconditions.  The algorithm as it stands allows this to happen for readability purposes, 
and simply cleans up the plan later with the sanitize_plan function.   
 



Finally, it is also clear that a more "elegant" solution may have been to take actions as functions, 
which receive preconditions as their parameters, and whose output are effects.  The thought of 
such an implementation is interesting and worthy of exploration, though time constraints 
prevented me from doing so in this case. 
 
As mentioned above, a complete version of the code and three tests can be found in the 
appendix. 
 
 
Conclusion 
 
First a definition of planning was introduced.  In a nutshell, it is "the task of coming up with a 
sequence of actions that will achieve a goal" (Russell, 375).  That much was obvious.  We then 
described two forms of linear, or totally ordered, planning - progression and regression planning 
through forward and backward state-space search, respectively.  Having something to contrast 
with, the definition of partial order planning became clear, as did its advantages:  it is able to 
exploit problem decomposition, and in doing so, work on several subgoals before arriving at a 
complete plan. 
 
Then, a long selected history of partial order planning was described.  First, Sussman's anomaly 
was introduced, as it was the impetus behind the design of the first non-linear planners.  
Sussman's anomaly showed how a simple problem could not be solved by traditional total-order 
planners, while Austin Tate's INTERPLAN and Sacerdoti's NOAH system were two of the first 
to do so, using non-linear plans. 
 
Tate recognized some flaws in NOAH, in that it could not backtrack (similar to my own 
implementation) in case of following an incorrect path, and to solve that problem, he created 
NONLIN.  David Chapman's TWEAK came in 1985, and it was the first formalization of a 
partial-order planner, which led to SNLP, the first complete and readable one.  UCPOP soon 
followed, and it broke out of the realm of STRIPS and into the richer, more descriptive language 
ADL.   
 
After UCPOP, research in the field seemed to die off until Nguyen (et al) showed how their 
system, RePOP, could defeat Graphplan by using many of the heuristics that graph planners were 
using.  It was important because that seemed to be considered undoable by a partial order planner 
at the time. 
 
Finally, we saw how a simple partial order planning DSL could be implemented in Ruby.   
 
 
 
 
 
 
 
 



Appendix A - Complete code of rubypop.rb and rubypop_test.rb 
rubypop.rb 

 
module Logic 
 def ^(condition) 
  [self, condition] 
 end  
end 
 
#modify the symbol class to include the ^ operation 
class Symbol 
 include Logic 
end 
#modify the array class to include the ^ operation 
class Array 
 include Logic 
end 
 
#modify the string class to include the ^ operation 
class String 
 include Logic 
end 
  
# the pop module   
module RubyPOP  
 #constants to use to store hash for precondition and effect  
 #(only for purposes of keeping the DSL looking close to the original) 
 PRECOND = :precondition 
 EFFECT = :effect  
  
 #store the start-state conditions 
 def Init(conditions) 
  @start_state = conditions 
 end 
 alias init Init 
  
 # store actions defined by the user  
 def Action(name, precondition_effect) 
  action= ["name" => name,  
              "precondition" => precondition_effect[PRECOND],  
       "effect" => precondition_effect[EFFECT]] 
  @actions = [] if !@actions 
  @actions = @actions + action  
 end 
 alias action Action 
  
 #store the goal defined by the user 
 def Goal(conditions) 
  @goal = conditions 
  @open_preconditions = @goal 
 end 
 alias goal Goal 
  
 def PlanName(name) 
  @plan_name = name 



 end 
  
 def output_actions 
  @actions.each do |x| 
   puts    
   puts "name: " + x["name"].to_s 
   puts "precondition: " + x["precondition"].to_s 
   puts "effect: " + x["effect"].to_s 
  end 
 end 
  
 def clear  
  @actions = [] 
  @goal = nil 
  @open_preconditions = nil 
  @plan_name = nil 
 end  
  
 # when the user enters a function, turn it into an action 
 def method_missing(method_id, *args) 
  symbol_name = "#{method_id}(" 
  args.each { |arg| symbol_name += arg.to_s + "," } 
  symbol_name[0,symbol_name.length-1] + ")" 
 end 
  
 def print_plan  
  puts "One possible plan for #{@plan_name}: "  
  puts get_plan 
 end 
  
 def get_plan 
  return sanitize_plan(make_plan) 
 end  
  
 private  
 def find_action_for(cond) 
  @actions.each do |action| 
   if action["effect"].class == Array 
    action["effect"].each { |effect| return action if 
effect.to_s == cond.to_s } 
   else  
    return action if action["effect"].to_s == cond.to_s  
   end 
  end 
  return nil 
 end 
  
 def remove_preconditions_matching_start_state 
  @open_preconditions.each do |cond| 
   @open_preconditions.delete(cond) if 
@start_state.index(cond) 
  end 
 end 
  
 #if there were some actions that duplicated precondition, it will cause 
a loop in plan.   
 #this function cleans that up by analyzing the current state and 



removing unnecessary actions 
 #a better implementation might make a graph of the actions and check 
that before putting them in 
 def sanitize_plan(plan) 
  current_state = [] 
  #should be examining the effects individually, since it may end 
up choosing two with the same effect 
  #but not currently doing so 
  plan.each { |action| current_state.push(action) if 
!current_state.index(action) } 
  return current_state 
 end 
    
 def make_plan 
  action_plan = [] 
  fail = false 
  while (@open_preconditions.size > 0 && !fail) 
   #randomize the open_preconditions and actions to show order 
doesn't matter 
   @open_preconditions=@open_preconditions.sort_by { rand } 
   @actions = @actions.sort_by { rand }   #---- causes bugs 
right now? 
    
   #find an action that solves it the first open precondition 
   attempted_precondition = @open_preconditions.shift 
   action_to_take = find_action_for attempted_precondition 
    
   if (action_to_take != nil) 
    add_preconditions_for action_to_take 
    remove_preconditions_fulfilled_by action_to_take 
    #add the action to the plan 
    action_plan.push(action_to_take["name"]) 
   else 
    #put the precondition back on the open_preconditions, 
since it wasn't fulfilled by an action 
    fail = true if @open_preconditions.size == 0 
    @open_preconditions.push attempted_precondition  
    remove_preconditions_matching_start_state 
    fail = false if @open_preconditions.size == 0 
   end 
  end 
  if @open_preconditions.size > 0 || fail 
   puts "There appears to be no plan that satisfies the 
problem." 
   puts "Open preconditions: "  
   puts @open_preconditions 
   action_plan = [] 
  end 
  sanitize_plan(action_plan.reverse) 
 end 
  
 #add the preconditions for this action if they don't already exist 
 def add_preconditions_for(action) 
  preconditions = action["precondition"] 
  if preconditions.class == Array 
   preconditions.each { |precondition| 
@open_preconditions.push(precondition) if (precondition != nil && 



!@open_preconditions.index(precondition)) } 
  else 
   @open_preconditions.push(preconditions) if (preconditions 
!= nil && !@open_preconditions.index(preconditions))   
  end 
 end 
  
 # remove any open preconditions which the action fulfilled 
 def remove_preconditions_fulfilled_by action 
  action["effect"].each do |effect| 
   @open_preconditions.each { |precon| 
@open_preconditions.delete(precon) if precon.to_s == effect.to_s } 
  end 
 end 
   
end 
 
 
 
rubypop_test.rb 

 
require 'rubypop' 
include RubyPOP 
################################################### 
PlanName("Put on Shoes") 
Goal(:RightShoeOn ^ :LeftShoeOn) 
 
Action(:RightShoe, EFFECT => :RightShoeOn, PRECOND => :RightSockOn) 
Action(:RightSock, EFFECT => :RightSockOn) 
Action(:LeftShoe, EFFECT => :LeftShoeOn, PRECOND => :LeftSockOn) 
Action(:LeftSock, EFFECT => :LeftSockOn) 
 
print_plan 
clear 
puts 
 
################################################### 
PlanName("Change Tire") 
Init(At(:Flat,:Axle) ^ At(:Spare,:Trunk)) 
Goal(At(:Spare,:Axle)) 
 
Action(Remove(:Spare,:Trunk),  
         PRECOND => At(:Spare,:Trunk),  
  EFFECT => NotAt(:Spare,:Trunk) ^ At(:Spare,:Ground)) 
Action(Remove(:Flat,:Axle),  
         PRECOND => At(:Flat,:Axle),  
  EFFECT => NotAt(:Flat,:Axle) ^ At(:Flat,:Ground)) 
Action(PutOn(:Spare,:Axle),  
         PRECOND => At(:Spare,:Ground) ^ NotAt(:Flat,:Axle),  
  EFFECT => NotAt(:Spare,:Ground) ^ At(:Spare,:Axle)) 
Action(:LeaveOvernight,  
   EFFECT => NotAt(:Spare, :Ground) ^ NotAt(:Spare,:Axle) ^ 
NotAt(:Spare,:Trunk) ^ NotAt(:Flat,:Ground) ^ NotAt(:Flat,:Axle)) 
 
print_plan 



clear 
puts 
 
################################################### 
PlanName("Watch Fulham beat Chelsea") 
Init(Asleep(:Sam)) 
Goal(In(:Sam,:Pub) ^ Watching(:Sam,:FulhamBeatChelsea)) 
Action(WakeUp(:Sam), 
  PRECOND => Asleep(:Sam), 
  EFFECT => Awake(:Sam)) 
Action(Bathe(:Sam), 
  PRECOND => Awake(:Sam), 
  EFFECT => Clean(:Sam)) 
Action(Shower(:Sam), 
  PRECOND => Awake(:Sam), 
  EFFECT => Clean(:Sam)) 
Action(Dress(:Sam), 
  PRECOND => Clean(:Sam), 
  EFFECT => Dressed(:Sam)) 
Action(Work(:Sam), 
  PRECOND => Clean(:Sam) ^ Dressed(:Sam), 
  EFFECT => IsAbleToGoToPub(:Sam)) 
Action(GoToPub(:Sam), 
  PRECOND => IsAbleToGoToPub(:Sam), 
  EFFECT => In(:Sam,:Pub)) 
Action(Watch(:Sam,:Fulham), 
  PRECOND => In(:Sam,:Pub), 
  EFFECT => Watching(:Sam,:FulhamBeatChelsea)) 
print_plan 
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