TheHistory of Partial Order Planning and RubyPOP
by Sammy Larbi

What is Partial-Order Planning?

For our case, well explore partia-order planning in aclassca planning environment. Such an
environment is fully observable (as opposed to only partidly s0) and deterministic (as opposed to
having randomness, or being stochastic). Further, the spaceis finite and atic in nature - it does
not change in the middle of deliberation. Findly, the environmert is "discrete (in time, action,
objects, and effects),” as opposed to continuous adong any of these axes (Russdl, 375. For
further reading on the characterigtics of environments, see Russdll pages 41-42).

To understand what partia-order planning entalls, it might be hepful to know what planning is,
and then describe totdly ordered planning. To that end, planning is "the task of coming up with
asequence of actionsthat will achieveagod" (Russl, 375). That isafairly sraightforward -
exactly as we would expect if we weren't speaking of computers and programs.

An exampleisample: given aset of actions | can perform, which onesdo | choose (and in what
order should | gpply them) in order to reach my goa? I've got to get to work this morning - what
should | do to get there? | might need to wake up, turn off the darm, shower, take off my wet
paamas and put on something suitable for doing business, and so on, until | reach work in the
morning (or, afternoon if it was alate night). However, we wouldn't consder having our agent
perform the actud driving of the car in aclassca environment. Thisis becausein doing so, our
environment loses severd of the characteristics we laid forth above - chief among these are that
the new environment would become stochastic and continuous.

There are severd types of dgorithmsthat dlow usto congruct aplan. For examples, we briefly
examine progression planning, regresson planning, and our main topic, partia-order planning.
Progression plaming is done with aforward state-space search, which isto say that, "we art in
the problem'sinitia state [and consder] sequences of actions until we find a sequence that
reachesagod date' (Russdl, 383). This can pose mgor performance problems because it
consders even completdy irrdevant actions. Asyou might guess from its name, regression
planning is the opposite - it works backwards from the goa state. This removes the problems
associated with examining irrdlevant actions, but as Russdll notes, it is not without its problems:
oftentimesit is not "obvious how to generate a description of the possible predecessors of the set
of god dates' (Russl, 384).

What digtinguishes partid-order planning from the other two isdl inits name - it isnot totaly
ordered as we seein progresson and regression planning. Instead, partial-order planning enables
usto "take advantage of problem decomposition.” The agorithm "works on severd subgoals
independently, solves them with severd subplans, then combines the subplans’ (Russdll, 387).

In addition, Russdll notes that, "such an gpproach dso has the advantage of flexibility in the

order in which it constructsthe plan. That is, the planner can work on ‘obvious or ‘important'
decisonsfirg, rather than being forced to work on stepsin chronologica order.”

We can see asmilar phenomenon in gpplication design - we may not choose to work in any
chronological order, but instead work on the parts to construct the whole. Whereas some of the
mogt important design decisons are often made at the beginning of a project, when we know the

least about it, the prudent designer may choose to work on more obvious decisions, or decide to
choose to work on the most important one at the time.

Selected Higtory of Partial Order Planning and its I mplementations

It was apparent as far back as 1975 that "linear planning” (or totally ordered planning, as
described above) was not sufficient. Russdll and Norvig relay the story of Allen Brown's
experiment: that it could not solve smple problems such as the Sussman anomaly, where given 3
blocks labeled A, B, and C, with block B on the table and C on top of A which ison thetable,
get to the goa state of A on top of B on top of C (Russdll, 410, 414) (See Figure 1). Around that
time, as part of his Ph.D., Ausgtin Tate released a paper which described INTERPLAN, asystem
to solve the problem of interleaving shown by Brown using Sussman's HACKER program (the
Sussman Anomaly) (Tate [A] / Russell 410).

Shortly theresfter, Earl D. Sacerdoti released his paper, "The Nonlinear Nature of Plans' which
presented a new data structure to represent plans and gave a glimpse of the first partia order
planners, Nets Of Action Hierarchies (NOAH) (and compared that to INTERPLAN, among

others) (Sacerdoti, 8).
B
I 5]
Start

il
Figure 1. The Sussman Anomaly.

Sacerdoti begins by acknowledging that, "we usudly think of plans as linear sequences of
actions ... because plans are usualy executed one step at atime.” However, he observed, the
"plans themsdves are not congtrained by limitations of linearity." Because of this, anew
gructure is needed, which he calls a"procedural net,” that would represent "a plan as a partia
ordering of actions with respect to time" (Sacerdoti, 1). He backs up his assertion showing the
famous Sussman anomaly (described above), and moves on to describe procedural nets and
NOAH itsdf.

Procedura nets are networks of four different types of nodes (GOAL, PHANTOM, SPLIT, and
JOIN) and each node represents an action. The nodes are then linked together to form plans.
GOAL nodes, clearly, represent agoal that should be achieved. PHANTOM nodes "represent
goasthat should aready be true at the time they are encountered.” And, as one might imagine,
SPLIT nodes represent splits in the plan, while JOIN nodes represent forks that are coming to an
end. Findly, asit isimplemented, each of the nodes has a pointer to some code (also known asa
closure, lambda expression, or anonymous function) (Sacerdoti, 2).

NOAH usesthat structure to represent plans, and a"generic’ domain specific language cdled
SOUP (Semantics of aUsers Problem) to give the system knowledge about the task domain
(Sacerdati, 2). To darify, | cdl it generic here becauseit is suitable for describing problemsin
many domains, but it is specific in that its sole purposeis to describe problems.

To creaste anew plan, first give NOAH agod to achieve and tell it about the problem with
SOUP. Thenit builds a procedura net with only agod node, which containsalis of dl
relevant SOUP functions asitsbody.” Findly, run the planning adgorithm. The planning
agorithm is described as (quoting Sacerdoti, 3):

1) Simulate the most detailed plan in the procedura net. Thiswill have the effect of producing
anew, more detailed plan.

2) Criticize the new plan, performing any necessary reordering or elimination of redundant
operations.

3 Goto Step 1.

(Sacerdoti, 3)

Step oneis performed in effect by caling the anonymous function pointed to by the node. Step
two runsthe plan againg severd critics, namely "Resolve Conflicts,” "Use Exigting Objects,”
and "Eliminate Redundant Preconditions,”" which dl perform the actions one would expect from
knowing their names (Sacerdoti, 4).

After Sacerdoti's release of NOAH, Tate created a new partia order planner dubbed NONLIN.
From Sacerdoti, he recognizes "that ordering constraints should only be imposed between the
actions comprising aplan if these are necessary for the achievement of the overal purpose of the
plan" and bases hiswork upon it (Tate [B], 889). On the other hand, Tate redlized the need for
NONLIN because

[NOAH] till had to make choices as to the order that actions were to be placed-in aplan to
correct for interactions. NOAH made this choice in one particular way. It did not keep any
backtrack choice points, so this decision, once made, wasirreversible. Thisleadsto an
incompleteness of the search space which can render some simple block pushing tasks
unachievesble (sic) by NOAH... NONLIN is capable of correcting for an interaction by
suggesting two orderings (which are sufficient to ensure the incompleteness of NOAH mentioned
aboveisavoided...). (Tate [B], 889)

Additiondly, Tate said, "Other operations performed by NOAH determinigticaly ... should dso
be considered as choice points' and gives two examples where "if such decisions cannot be
undone, some problems are unsolvable.” Of course, NONLIN fixed these problems (Tate [B],
889).

As David Chagpman noted in 1985, "planners of the most promising (‘nonlinear’) sort have been
complicated, heuridtic, ill-defined Al programs, without clear conditions under which they

work." And since thetime of NOAH, INTERPLAN, and NONLIN (and others I've left out for
gpace reasons), there have been various improvements in the realm of partial-order planning.
Chapman's program, TWEAK, is one of them, and was followed by the UCPOP and RePOP
planners.

Chapman said that he "decided to copy exactly” Sacerdoti's work on NOAH in implementing his
own planner, but he struggled to make it work (and TWEAK was the result of it when he did
finaly get it to work). In explaining the reason for publishing hiswork on TWEAK, Chapman
quotes Sacerdoti who said NOAH's "basic operations’ (Chapman, 1) "were developed in an ad

hoc fashion. No atempt has been made to judtify the transformations that they perform, or to
enable them to generate al transformations.” (Sacerdoti, quoted in Chapman, 1) He then goeson
to compare what he has done with Sacerdoti's work to the longstanding Al varieties of " scruffy™
versus"neat.” In generd, the "scruffies’ just want to try solutions and figure out what seemsto
work, and tolerate less mathematical rigor and proof than the "neats’ (Russl, 25).

In essence, TWEAK was Chgpman's successful attempt at formaizing the "theory about the
ways in which interacting subgoas can be dedt with" (Sacerdoti, quoted in Chapman, 1), or
formalizing partid-order planning.

Chapman cdled TWEAK "arigorous mathematica reconstruction of previous nonlinear
planners” and "an implemented, running program,” which he described and proved correct in his
paper. Hewasright: eighteen yearslater Russall and Norvig said hiswork "led to what
arguably the first ample and readable description of a complete partia-order planner,” which
was incarnated as SNLP (Russdll, 410) (on which Russdl and Norvig base the POP in their
book).

After SNLP came UCPOP in 1992 from Daniel Weld (who aso was an author of SNLP) and J.
Scott Penberthy. Asthetitle states, it is"asound, complete, partia order planner for ADL."
(ADL isamore advanced way to represent problems, Action Description Language). Their
desire to create UCPOP stemmed from two problems they found with existing research into POP
algorithms. The first hearkens back to the scruffies vs. neats debate: Many researchers "'l ooked
at formd characterigtics of languages for describing change,” as others built "actua planners,

often losing a precise understanding of their programsin a forest of pragmatic choices'

(Penberthy, 1). Further, the very few that had "complete dgorithms' (emphasis added) either
only implemented "the regtrictive STRIPS representation” of problems (citing TWEAK and
SNLP), or represented "plans as totally ordered sequences of actions’ (Penberthy, 1).

Penberthy and Weld described UCPOP as "atheorem prover” at its heart. The agorithm itsalf
requires three parameters. a plan, the set of goasthat remain, and aset of actions. The godsare
expressed as a tuple with two dements. a precondition and a step in the plan (Penberthy 6-7).

An overview of the algorithm can be described asfollows:

1) If the set of god datesis empty, return the plan (reporting "success").

2) Sdect agod fromthe set of gods. If thereisan invdid link that makes the plan
impossible, exit, reporting fallure.

3) Choose an operator

4) Generate subgods

5) Protect againg threets that may "cause the undoing of a needed god if that step is done at
the wrong time"' (Dyer).

6) Recursvey cdl the dgorithm if the plan is not inconsgtent.

(Penberthy, 6)

Although UCPOP was novd for itstime, avigt today to its website (maintained by the authors at
the Univergity of Washington) showsit is quite outdated. The authors note, "UCPOP isan aging
system - we recommend Sensory Graphplan (SGP) instead. SGP handles a superset of UCPOP

functiondity and is much, much faster” (Weld). On the other hand, research by XuanLong
Nguyen and Subbarao Kambhampati in 2000 has shown that quite a few improvements can be
made to UCPOP in particular, and partia-order planning in generd.

Nguyen and Kambhampati argue that "the prevailing pessmism about the scdability of partid
order planning (POP) agorithms' is perhaps unwarranted (Nguyen, 1). The pair appear to regret
that research on POP agorithms seemed to stop (around 5 years prior) and make that point that
advances in "heuristic Sate gpace planners ... and CSP-based planners’ like Graphplan are
perhaps " (mis)interpreted as establishing the supremacy of state space and CSP-based
approaches over” those of the POP variety (Nguyen, 1).

As evidence of their claim, they created RePOP, which is a partia-order planner based on
UCPOP. But the value of RePOP liesin the authors "key insight ... that the techniques
responsible for the efficiency of the currently successful planners ... can dso be adapted to
dramatically improve the efficiency of the POP dgorithm™ (Nguyen, 1).

The techniques they applied to RePOP that other strategies had applied, "distance based
heuridtics, digunctive representations for planning condraints and reachability analyss,” led to
outstanding results in "severd ‘pardld planning' domains' (Nguyen, 6). Infact, sncein generd
partia ordered planners are more flexible than their CSP counterparts, they obtained greater
flexibility than Gragphplan, while dso outperforming it in mogt of their experiments (Nguyen, 5-

6). The performance increase wasn't dight, however - in one problem that RePOP took |ess than
3 seconds to solve, Graphplan labored for 47 minutes. On average, when GraphPlan could solve
a problem within 3 hours or without using al 250 MB of memory, it gtill took around 10 times
longer than RePOP to find a solution (Nguyen, 5).

The systems described above have acommon link in that they are all focused on generic
problems. However, it should be noted that in some domains, such as medicine, planners of
these sorts do not tend to work well. As a consequence, great improvements — in performance
and in accuracy — can be made by building a planner that can be supplemented with domain-
specific information (Miksch). Despite the interesting nature of such systems, covering planners
of that sort is outside the scope of this paper, and | now turn to the second task of this report —
building apartid order planner in Ruby.

Consgtructing a POP Domain Specific Language in Ruby

Our god isto give commands to the partial order planner, teling it whet the god is, the initid
date (if it exists), and actions it can perform. The actions contain the name of the action, any
preconditions that must be fulfilled before that action can be performed, and a st of effectsthe
action has on theworld sate. After giving thisinformation to the planner, it should output aplan
on demand if one exists.

For smplicity's sake, I've used a STRIPS:-like notation, without the complexity of exigentidly or
universdly quantified varigbles, among other smplifications. Further, only one possible planis
returned, rather than attempting to find al plans. The one returned is not guaranteed to be
optimal, though (inadequate) tests have shown that it is correct. Plans are to improve these

limitations in the future, moving to aless redtrictive ADL syntax, and adding support for
returning multiple plans.

In the meantime, the firg task isto dlow a user to enter commands in asyntax that looks like:

Pl anName(" Put on Shoes")
Goal (: Ri ght ShoeOn ~ : Left ShoeOn)

Action(: Ri ght Shoe, EFFECT => : Ri ght ShoeOn, PRECOND => : Ri ght SockOn)
Action(: Ri ght Sock, EFFECT => : Ri ght SockOn)

Action(: Left Shoe, EFFECT => :Left ShoeOn, PRECOND => : Left SockOn)
Action(: Left Sock, EFFECT => :Left SockOn)

Code Sample 1l

Also, it should dlow function-like notation, such as;

Pl anName(" Change Tire")
Init(At(:Flat,:Axle) ~ At(:Spare,: Trunk))
Goal (At (: Spare, : Axl e))

Act i on(Renove(: Spar e, : Trunk),

PRECOND => At (: Spare, : Trunk),

EFFECT => Not At (: Spare, : Trunk) ~ At(: Spare,: G ound))
Action(Renove(: Fl at, : Axl e),

PRECOND => At (:Flat,:Axle),

EFFECT => NotAt(:Flat,:Axle) ™~ At(:Flat,: G ound))
Action(Put On(: Spare, : Axl e),

PRECOND => At (: Spare,:Gound) ™~ NotAt(:Flat,:Axle),

EFFECT => Not At (: Spare, : Gcound) ~ At(:Spare,:Axle))
Acti on(: LeaveOverni ght,

EFFECT => Not At (: Spare, :Ground) ~ NotAt(:Spare,:Axle) 7

Not At (: Spare, : Trunk) ~ NotAt(:Flat,:Gound) ~

Not At (: Fl at,: Axl e))

Code Sample2

The domain described in Code Sample 1 should produce aplan such as. Lef t Sock—>
Lef t Shoe> Ri ght Sock > Ri ght Shoe andRi ght Sock-> Left Sock—> Left Shoe>
Ri ght Shoe. Asone can surmise from looking a the domain as it iswritten, any plan where the
socks are on before the shoesis sufficient.

On the other hand, the domain given in Code Sample 2 should render planslike
Renmove(Fl at, Axl e) = Renopve(Spare, Trunk) - Put On(Spare, Axl e), switching
the first two actions depending on which it decides to do first (snce ether one would work).

Implementing (or alowing) such syntax in Ruby turns out to be smple. To get the conjunction
operator , we Smply define a module with * as a method, and include that module in Ruby's
String, Symbol, and Array classes, since welll be using each of these as symbolsin our "new"
language (See Code Sample 3).

nodul e Logic
def ~(condition)
[self, condition]
end
end

#nmodi fy the synbol class to include the » operation
cl ass Synbol

i ncl ude Logic
end
#modify the array class to include the ™ operation
class Array

i ncl ude Logic
end

#nmodi fy the string class to include the » operation
class String

i ncl ude Logic
end

Code Sample 3

Next, we need to alow the use of function-style symbols, such asRenove(: Spare, : Trunk). AS
with mogt thingsin Ruby, thisisadso smple. Wejust usethe et hod_ni ssi ng method in our
module:

when the user enters a function, turn it into an action
def method_mi ssing(method_id, *args)
synmbol _name = "#{method_id}("
args.each { |arg| synbol_nanme += arg.to_s + "," }
synbol _nane[0, synbol _nane.length-1] + ")"
end

Code Sample4

We now have the ability to use the syntax we laid forth in Code Samples 1 and 2 to define our
problems that need planning. All that remains are to implement the functions in our "language’
that alow usto define the problem domain, and an agorithm to solve for plans.

Todo 5o, firgt weinitidize the start sate withan 1 ni t () function that Smply storesthe
conditionsitispassed. Smilarly, the god state and initial open preconditions are stored into

member variables asthey are passed viathe Goal () method. Finaly, actions are congtructed
from a name and a hash with keys PRECOND and EFFECT (See Code Sample 5).

#constants to use to store hash for precondition and effect

#(only for purposes of keeping the DSL | ooking close to the original)
PRECOND = : precondition

EFFECT = :effect

#store the start-state conditions
def Init(conditions)

@tart_state = conditions
end
alias init Init

#store the goal defined by the user
def Goal (conditions)
@oal = conditions
@pen_preconditions = @oa
end
alias goal Goa

store actions defined by the user
def Action(nanme, precondition_effect)
action= ["name" => nane,
"precondition" => precondition_effect[PRECOND],
"effect"” => precondition_effect[EFFECT]]
[1 if !@ctions
@ctions + action

@ctions =
@ctions =

end
alias action Action

Code Sample5

Finaly, we come to the mesat of the problem, the partid-order planning agorithm. The
agorithm itsdf follows afarly smple path:

1) From thelist of open preconditions, choose one.

2) Find an action whose effect is the same as the precondition we chose and add it to the
plan.

3) Addtotheligt of preconditions any requirements for that action.

4) Remove from thelist of preconditions any that match the effects for the chosen action.

5) Repesat steps 1-4 until the set of open preconditionsis empty, or no action that satifiesa
precondition can be found.

6) Remove any preconditions from the open list that match the gtarting dtate.

7) If the st of open preconditions is empty, return the plan. Otherwise, fall.

The dgorithm in Ruby follows

def make_pl an

end

action_plan = []

fail = false

while (@pen_preconditions.size >0 && !fail)
#randoni ze the open_preconditions and actions to show order
#doesn't matter
@pen_precondi ti ons=@pen_precondi tions.sort_by { rand }

#find an action that solves it the first open precondition
attenpted_preconditi on = @pen_preconditions.shift
action_to_take = find_action_for attenpted_precondition

if (action_to_take !'= nil)
add_preconditions_for action_to_take
remove_preconditions_fulfilled_by action_to_take
#add the action to the plan
action_pl an. push(action_to_take["nane"])

el se
#put the precondition back on the open_preconditions, since
#it wasn't fulfilled by an action
fail = true if @pen_preconditions.size == 0
@pen_precondi tions. push attenpted_precondition
renmove_preconditions_matching_start_state
fail = false if @pen_preconditions.size ==
end
end
if @pen_preconditions.size > 0 || fai
puts "There appears to be no plan that satisfies the problem™
puts "Open preconditions:
puts @pen_preconditions
action_plan = []
end

sanitize_plan(action_plan.reverse)

Mogt of the code is gptly named where there are functions (see the gppendix for the complete
code), but two issues in this dgorithm immediately jump to the forefront. Thefirst is why aren't
we aso randomizing the lig of actions? Clearly, if there are two actions that satisfy the same
precondition, the first one encountered will dwayswin. This was done because randomizing the
list of actions (if two or more satisfy the same precondition) has the potentid to cause aloop of
preconditions/effects, and thus cause incorrect plans to be generated. Since no attempt was made
at finding the optima plan, | didn't want to clutter the code by fixing this and make it harder to

follow. Correct plans are still generated, and a future verson meant for more demanding
environments would indeed adlow a random action to be chosen.

The second issue that is not immediately clear begs the question: "just what is that

sani ti ze_pl an method doing there?' Some actions may add duplicate preconditions to the set

of open preconditions. The agorithm asit sands adlows this to happen for readability purposes,

and smply cleans up the plan later withthe sani ti ze_pl an function.

Findly, itisdso dear that amore "degant” solution may have been to take actions as functions,
which receive preconditions as their parameters, and whose output are effects. The thought of
such an implementation isinteresting and worthy of exploration, though time congraints
prevented me from doing so in this case.

As mentioned above, a complete version of the code and three tests can be found in the

appendix.

Conclusion

Firg adefinition of planning was introduced. In anutshel, it is "the task of coming up with a
sequence of actionsthat will achieve agod"” (Russdl, 375). That much was obvious. Wethen
described two forms of linear, or totaly ordered, planning - progression and regresson planning
through forward and backward state- gpace search, respectively. Having something to contrast
with, the definition of partial order planning became clear, as did its advantages: itisableto
exploit problem decomposition, and in doing so, work on severd subgoas before arriving a a
complete plan.

Then, along selected higtory of partid order planning was described. First, Sussman's anomay
was introduced, as it was the impetus behind the design of the first non-linear planners.
Sussman's anomay showed how a smple problem could not be solved by traditiond total-order
planners, while Audtin Tates INTERPLAN and Sacerdoti's NOAH system were two of the first
to do so, using non-linear plans.

Tate recognized some flawsin NOAH, in that it could not backtrack (Smilar to my own
implementation) in case of following an incorrect path, and to solve that problem, he created
NONLIN. David Chapman's TWEAK camein 1985, and it was the first formalization of a
partid-order planner, which led to SNLP, the first complete and readable one. UCPOP soon
followed, and it broke out of the relm of STRIPS and into the richer, more descriptive language
ADL.

After UCPOP, research in the field seemed to die off until Nguyen (et a) showed how their
system, RePOP, could defeat Graphplan by usng many of the heurigtics that graph planners were
using. It wasimportant because that seemed to be consdered undoable by a partia order planner
a thetime.

Findly, we saw how asmple partid order planning DS could be implemented in Ruby.

Appendix A - Complete code of rubypop.rb and rubypop _test.rb
rubypop.rb

nodul e Logi c
def ~(condition)
[sel f, condition]
end
end

#nmodi fy the symbol class to include the ™ operation
cl ass Synbol

i ncl ude Logic
end
#nmodify the array class to include the ~ operation
class Array

i ncl ude Logic
end

#nmodi fy the string class to include the ™ operation
class String

i ncl ude Logic
end

the pop nodul e
nodul e RubyPOP
#constants to use to store hash for precondition and effect
#(only for purposes of keeping the DSL | ooking close to the original)
PRECOND = : precondition
EFFECT = :effect

#store the start-state conditions
def Init(conditions)

@tart_state = conditions
end
alias init Init

store actions defined by the user
def Action(name, precondition_effect)
action= ["name" => nane,
"precondition" => precondition_effect[PRECOND],
"effect" => precondition_effect[EFFECT]]
[T if '@ctions
@ctions + action

@ctions =
@ctions =

end
alias action Action

#store the goal defined by the user
def Goal (conditions)
@oal = conditions
@pen_preconditions = @oal
end
al i as goal Goa

def Pl anName(nane)
@l an_name = nane

end

def output_actions
@ctions.each do | x|
puts
puts "name: + x["nanme"].to_s
puts "precondition: " + x["precondition"].to_s
puts "effect: " + x["effect"].to_s

end

end

def cl ear
@ctions = []
@oal = ni
@pen_preconditions = ni
@l an_nanme = ni

end

when the user enters a function, turn it into an action
def method_mi ssing(method_id, *args)
synmbol _name = "#{method_id}("
args.each { |arg| synbol _nanme += arg.to_s + "," }
synbol _nane[0, synbol _nane.length-1] + ")"
end

def print_plan
puts "One possible plan for #{ @l an_nane}:
puts get _plan

end

def get_pl an
return sanitize_plan(make_pl an)
end

private
def find_action_for(cond)
@ctions. each do | action

if action["effect"].class == Array
action["effect"].each { |effect| return action if
effect.to_s == cond.to_s }
el se
return action if action["effect"].to_s == cond.to_s
end
end
return ni

end

def renove_preconditions_matching start_state
@pen_precondi tions. each do | cond
@pen_preconditions. del ete(cond) if
@tart_state.index(cond)
end
end

#if there were sone actions that duplicated precondition, it will cause
a loop in plan.
#this function cleans that up by analyzing the current state and

renovi ng unnecessary actions
#a better inplenentation nmight nmake a graph of the actions and check
that before putting themin
def sanitize_plan(plan)
current _state = []
#shoul d be exami ning the effects individually, since it may end
up choosing two with the sane effect
#but not currently doing so
pl an. each { |action| current_state.push(action) if
Icurrent _state.index(action) }
return current_state
end

def make_pl an
action_plan = []
fail = fal se
while (@pen_preconditions.size >0 && !fail)
#randoni ze the open_preconditions and actions to show order
doesn't matter
@pen_precondi ti ons=@pen_preconditions.sort_by { rand }
@ctions = @ctions.sort_by { rand } #---- causes bugs
ri ght now?

#find an action that solves it the first open precondition
attenpted_preconditi on = @pen_preconditions.shift
action_to_take = find_action_for attenpted_precondition

if (action_to_take !'= nil)
add_preconditions_for action_to_take
remove_preconditions_fulfilled_by action_to_take
#add the action to the plan
action_pl an. push(action_to_take["nane"])

el se
#put the precondition back on the open_preconditions,

since it wasn't fulfilled by an action

fail = true if @pen_preconditions.size ==
@pen_precondi tions. push attenpted_precondition
renmove_preconditions_nmatching_start_state

fail = false if @pen_preconditions.size ==
end
end
if @pen_preconditions.size > 0 || fai
puts "There appears to be no plan that satisfies the
probl em "
puts "Open preconditions: "
puts @pen_preconditions
action_plan = []
end
sanitize_plan(action_plan.reverse)
end

#add the preconditions for this action if they don't already exist
def add_preconditions_for(action)
preconditions = action["precondition"]
if preconditions.class == Array
preconditions.each { | precondition
@pen_precondi tions. push(precondition) if (precondition !'= nil &&

I @pen_precondi tions.index(precondition)) }
el se
@pen_precondi tions. push(preconditions) if (preconditions
I'= nil && ! @pen_preconditions.index(preconditions))
end
end

renove any open preconditions which the action fulfilled
def renove_preconditions _fulfilled_by action
action["effect"].each do |effect]|
@pen_precondi tions. each { | precon|
@pen_preconditions. del ete(precon) if precon.to_s == effect.to_s }
end
end

end

rubypop_test.rb

require 'rubypop'

i ncl ude RubyPOP

HitH R BB BB R R R R R R R AR HHHHHHHHH AR
Pl anName(" Put on Shoes")

Goal (: Ri ght ShoeOn ~ : Left ShoeOn)

Action(: Ri ght Shoe, EFFECT => : Ri ght ShoeOn, PRECOND => : Ri ght SockOn)
Action(: Ri ght Sock, EFFECT => : Ri ght SockOn)

Action(: LeftShoe, EFFECT => :LeftShoeOn, PRECOND => : Left SockOn)
Action(:LeftSock, EFFECT => :Left SockOn)

print_plan
cl ear
puts

HRHH R R R R R R
Pl anName(" Change Tire")

Init(At(:Flat,:Axle) » At(:Spare,: Trunk))

Goal (At (: Spare, : Axl e))

Acti on(Renove(: Spare, : Trunk),
PRECOND => At (: Spare, : Trunk),
EFFECT => Not At (: Spare, : Trunk) "~ At(:Spare,: G ound))
Acti on(Renove(: Fl at, : Axl e),
PRECOND => At (:Flat,:Axle),
EFFECT => NotAt(:Flat,:Axle) ~ At(:Flat,: G ound))
Acti on(Put On(: Spare, : Axl e),
PRECOND => At (: Spare,: Ground) » NotAt(:Flat,:Axle),
EFFECT => Not At (: Spare, : Gound) " At(:Spare,: Axle))
Acti on(: LeaveOver ni ght,
EFFECT => Not At (: Spare, :Gound) ™ NotAt(:Spare,:Axle) "
Not At (: Spare, : Trunk) ~ NotAt(:Flat,:Gound) * NotAt(:Flat,:Axle))

print_plan

cl ear
puts

HHHBH SRR H R R R R R R R R R R
Pl anName(" Wat ch Ful ham beat Chel sea")
I nit(Asl eep(: Sam)
Goal (I n(: Sam : Pub) ~ Watchi ng(: Sam : Ful hanBeat Chel sea))
Act i on(WakeUp(: Sam ,
PRECOND => Asl eep(: San),
EFFECT => Awake(: Sam))
Act i on(Bat he(: Sam),
PRECOND => Awake(: Sam),
EFFECT => C ean(: Sam))
Act i on(Shower (: Sam) ,
PRECOND => Awake(: Sam,
EFFECT => C ean(: Sam)
Action(Dress(:Sam,
PRECOND => Cl ean(: Sam,
EFFECT => Dressed(: Sam))
Action(Work(: Sam,
PRECOND => Cl ean(: Sam) ~ Dressed(: San),
EFFECT => | sAbl eToGoToPub(: Sam))
Act i on(GoToPub(: Sam),
PRECOND => | sAbl eToGoToPub(: Sam ,
EFFECT => I n(: Sam : Pub))
Action(Watch(: Sam : Ful ham),
PRECOND => | n(: Sam : Pub),
EFFECT => Wat chi ng(: Sam : Ful hanBeat Chel sea))
print_plan

References
Chapman, David. "Planning for Conjunctive Gods" Massachusetts I nstitute of Technology.
1985. Avallable online from MIT at http://dspace.mit.eduw/handle/1721.1/69472mode=full

Dyer, C.R. "Partid-Order Planning: Chapter 11." CS 540 Lecture Notes. Retrieved on the
World Wide Web on 4/24/2007 from http://www.cswisc.edu/~dyer/cs540/notes/pop.html.

Figure 1. Retrieved on the World Wide Web on 4/20/2007 from
http://mww.cs.cardiff.ac.uk/Dave/Al 2/sussman.gif and verified in Russall and Sacerdoti.

Miksch, Silvia "Plan management in the medica domain." Al Communications 12, pp 209-
235. 1999.

Nguyen, XuanLong and Kambhampati, Subbarao. "Reviving Partid Order Planning.” 2000,
Retrieved on 4/20/2007 from http://rakaposhi .eas.asu.edu/ucpop-revive.pdf on the World Wide
Web.

Penberthy, J. Scott and Weld, Daniel S. "UCPOP: A Sound, Complete, Partial Order Planner for
ADL." Third International Conference on Principles of Knowledge Representation and
Reasoning, pp. 189-197. Cambridge, MA.

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach 2" Edition. New
Jersey: Pearson Education, 2003.

Sacerdoti, Earl D. "The Nonlinear Nature of Plans” 1975. Proceedings of the Fourth
International Joint Conference on Artificial Intelligence. Retrieved on 4/20/2007 from
http:/dli.iiit.ac.invijca/ JICAI-75-V OL-1& 2/PDF/028.pdf on the World Wide Web.

Tate, Audtin [A]. "INTERPLAN: a plan generation system which can ded with interactions
between goals' Research Memorandum MIP-R-109, Edinburgh: Machine Intelligence Research
Unit, December 1974. (Can be found online at
http://www.aia.ed.ac.uk/project/oplan/documents/1990- PRE/1974- mip-r109-tate-interpl an.pdf)

Tate, Audtin [B]. "Generating Project Networks', Proceedings of the Fifth Internationa Joint
Conference on Artificid Inteligence (IJCAI-77) pp. 888-893, Boston, Mass. USA, August 1977.
(Can befound online at http://www.aiai.ed.ac.uk/project/oplan/documents/1990- PRE/1977-ijcai-
tate- generding- proj ect- networks.pdf)

Weld, Dan and Penberthy, Scott. "The UCPOP Panner." Retrieved on the World Wide Web on
4/19/2007 from http:/Mmww.cswashington.edu/ai/ucpop.html.

