

The History of Partial Order Planning and RubyPOP
 by Sammy Larbi

What is Partial-Order Planning?

For our case, we'll explore partial-order planning in a classical planning environment. Such an
environment is fully observable (as opposed to only partially so) and deterministic (as opposed to
having randomness, or being stochastic). Further, the space is finite and static in nature - it does
not change in the middle of deliberation. Finally, the environment is "discrete (in time, action,
objects, and effects)," as opposed to continuous along any of these axes (Russell, 375. For
further reading on the characteristics of environments, see Russell pages 41-42).

To understand what partial-order planning entails, it might be helpful to know what planning is,
and then describe totally ordered planning. To that end, planning is "the task of coming up with
a sequence of actions that will achieve a goal" (Russell, 375). That is a fairly straightforward -
exactly as we would expect if we weren't speaking of computers and programs.

An example is simple: given a set of actions I can perform, which ones do I choose (and in what
order should I apply them) in order to reach my goal? I've got to get to work this morning - what
should I do to get there? I might need to wake up, turn off the alarm, shower, take off my wet
pajamas and put on something suitable for doing business, and so on, until I reach work in the
morning (or, afternoon if it was a late night). However, we wouldn't consider having our agent
perform the actual driving of the car in a classical environment. This is because in doing so, our
environment loses several of the characteristics we laid forth above - chief among these are that
the new environment would become stochastic and continuous.

There are several types of algorithms that allow us to construct a plan. For examples, we briefly
examine progression planning, regression planning, and our main topic, partial-order planning.
Progression planning is done with a forward state-space search, which is to say that, "we start in
the problem's initial state [and consider] sequences of actions until we find a sequence that
reaches a goal state" (Russell, 383). This can pose major performance problems because it
considers even completely irrelevant actions. As you might guess from its name, regression
planning is the opposite - it works backwards from the goal state. This removes the problems
associated with examining irrelevant actions, but as Russell notes, it is not without its problems:
oftentimes it is not "obvious how to generate a description of the possible predecessors of the set
of goal states" (Russell, 384).

What distinguishes partial-order planning from the other two is all in its name - it is not totally
ordered as we see in progression and regression planning. Instead, partial-order planning enables
us to "take advantage of problem decomposition." The algorithm "works on several subgoals
independently, solves them with several subplans, then combines the subplans" (Russell, 387).
In addition, Russell notes that, "such an approach also has the advantage of flexibility in the
order in which it constructs the plan. That is, the planner can work on 'obvious' or 'important'
decisions first, rather than being forced to work on steps in chronological order."

We can see a similar phenomenon in application design - we may not choose to work in any
chronological order, but instead work on the parts to construct the whole. Whereas some of the
most important design decisions are often made at the beginning of a project, when we know the

least about it, the prudent designer may choose to work on more obvious decisions, or decide to
choose to work on the most important one at the time.

Selected History of Partial Order Planning and its Implementations

It was apparent as far back as 1975 that "linear planning" (or totally ordered planning, as
described above) was not sufficient. Russell and Norvig relay the story of Allen Brown's
experiment: that it could not solve simple problems such as the Sussman anomaly, where given 3
blocks labeled A, B, and C, with block B on the table and C on top of A which is on the table,
get to the goal state of A on top of B on top of C (Russell, 410, 414) (See Figure 1). Around that
time, as part of his Ph.D., Austin Tate released a paper which described INTERPLAN, a system
to solve the problem of interleaving shown by Brown using Sussman's HACKER program (the
Sussman Anomaly) (Tate [A] / Russell 410).

Shortly thereafter, Earl D. Sacerdoti released his paper, "The Nonlinear Nature of Plans" which
presented a new data structure to represent plans and gave a glimpse of the first partial order
planners, Nets Of Action Hierarchies (NOAH) (and compared that to INTERPLAN, among
others) (Sacerdoti, 8).

Figure 1. The Sussman Anomaly.

Sacerdoti begins by acknowledging that, "we usually think of plans as linear sequences of
actions … because plans are usually executed one step at a time." However, he observed, the
"plans themselves are not constrained by limitations of linearity." Because of this, a new
structure is needed, which he calls a "procedural net," that would represent "a plan as a partial
ordering of actions with respect to time" (Sacerdoti, 1). He backs up his assertion showing the
famous Sussman anomaly (described above), and moves on to describe procedural nets and
NOAH itself.

Procedural nets are networks of four different types of nodes (GOAL, PHANTOM, SPLIT, and
JOIN) and each node represents an action. The nodes are then linked together to form plans.
GOAL nodes, clearly, represent a goal that should be achieved. PHANTOM nodes "represent
goals that should already be true at the time they are encountered." And, as one might imagine,
SPLIT nodes represent splits in the plan, while JOIN nodes represent forks that are coming to an
end. Finally, as it is implemented, each of the nodes has a pointer to some code (also known as a
closure, lambda expression, or anonymous function) (Sacerdoti, 2).

NOAH uses that structure to represent plans, and a "generic" domain specific language called
SOUP (Semantics of a Users' Problem) to give the system knowledge about the task domain
(Sacerdoti, 2). To clarify, I call it generic here because it is suitable for describing problems in
many domains, but it is specific in that its sole purpose is to describe problems.

To create a new plan, first give NOAH a goal to achieve and tell it about the problem with
SOUP. Then it builds a procedural net with only a goal node, which contains a "list of all
relevant SOUP functions as its body." Finally, run the planning algorithm. The planning
algorithm is described as (quoting Sacerdoti, 3):

1) Simulate the most detailed plan in the procedural net. This will have the effect of producing
a new, more detailed plan.

2) Criticize the new plan, performing any necessary reordering or elimination of redundant
operations.

3) Go to Step 1.
(Sacerdoti, 3)

Step one is performed in effect by calling the anonymous function pointed to by the node. Step
two runs the plan against several critics, namely "Resolve Conflicts," "Use Existing Objects,"
and "Eliminate Redundant Preconditions," which all perform the actions one would expect from
knowing their names (Sacerdoti, 4).

After Sacerdoti's release of NOAH, Tate created a new partial order planner dubbed NONLIN.
From Sacerdoti, he recognizes "that ordering constraints should only be imposed between the
actions comprising a plan if these are necessary for the achievement of the overall purpose of the
plan" and bases his work upon it (Tate [B], 889). On the other hand, Tate realized the need for
NONLIN because

[NOAH] still had to make choices as to the order that actions were to be placed-in a plan to
correct for interactions. NOAH made this choice in one particular way. It did not keep any
backtrack choice points, so this decision, once made, was irreversible. This leads to an
incompleteness of the search space which can render some simple block pushing tasks
unachieveable (sic) by NOAH… NONLIN is capable of correcting for an interaction by
suggesting two orderings (which are sufficient to ensure the incompleteness of NOAH mentioned
above is avoided…). (Tate [B], 889)

Additionally, Tate said, "Other operations performed by NOAH deterministically … should also
be considered as choice points" and gives two examples where "if such decisions cannot be
undone, some problems are unsolvable." Of course, NONLIN fixed these problems (Tate [B],
889).

As David Chapman noted in 1985, "planners of the most promising ('nonlinear') sort have been
complicated, heuristic, ill-defined AI programs, without clear conditions under which they
work." And since the time of NOAH, INTERPLAN, and NONLIN (and others I've left out for
space reasons), there have been various improvements in the realm of partial-order planning.
Chapman's program, TWEAK, is one of them, and was followed by the UCPOP and RePOP
planners.

Chapman said that he "decided to copy exactly" Sacerdoti's work on NOAH in implementing his
own planner, but he struggled to make it work (and TWEAK was the result of it when he did
finally get it to work). In explaining the reason for publishing his work on TWEAK, Chapman
quotes Sacerdoti who said NOAH's "basic operations" (Chapman, 1) "were developed in an ad

hoc fashion. No attempt has been made to justify the transformations that they perform, or to
enable them to generate all transformations." (Sacerdoti, quoted in Chapman, 1) He then goes on
to compare what he has done with Sacerdoti's work to the longstanding AI varieties of "scruffy"
versus "neat." In general, the "scruffies" just want to try solutions and figure out what seems to
work, and tolerate less mathematical rigor and proof than the "neats" (Russell, 25).

In essence, TWEAK was Chapman's successful attempt at formalizing the "theory about the
ways in which interacting subgoals can be dealt with" (Sacerdoti, quoted in Chapman, 1), or
formalizing partial-order planning.

Chapman called TWEAK "a rigorous mathematical reconstruction of previous nonlinear
planners," and "an implemented, running program," which he described and proved correct in his
paper. He was right: eighteen years later Russell and Norvig said his work "led to what
arguably the first simple and readable description of a complete partial-order planner," which
was incarnated as SNLP (Russell, 410) (on which Russell and Norvig base the POP in their
book).

After SNLP came UCPOP in 1992 from Daniel Weld (who also was an author of SNLP) and J.
Scott Penberthy. As the title states, it is "a sound, complete, partial order planner for ADL."
(ADL is a more advanced way to represent problems, Action Description Language). Their
desire to create UCPOP stemmed from two problems they found with existing research into POP
algorithms. The first hearkens back to the scruffies vs. neats debate: Many researchers "looked
at formal characteristics of languages for describing change," as others built "actual planners,
often losing a precise understanding of their programs in a forest of pragmatic choices"
(Penberthy, 1). Further, the very few that had "complete algorithms" (emphasis added) either
only implemented "the restrictive STRIPS representation" of problems (citing TWEAK and
SNLP), or represented "plans as totally ordered sequences of actions" (Penberthy, 1).

Penberthy and Weld described UCPOP as "a theorem prover" at its heart. The algorithm itself
requires three parameters: a plan, the set of goals that remain, and a set of actions. The goals are
expressed as a tuple with two elements: a precondition and a step in the plan (Penberthy 6-7).
An overview of the algorithm can be described as follows:

1) If the set of goal states is empty, return the plan (reporting "success").
2) Select a goal from the set of goals. If there is an invalid link that makes the plan

impossible, exit, reporting failure.
3) Choose an operator
4) Generate subgoals
5) Protect against threats that may "cause the undoing of a needed goal if that step is done at

the wrong time" (Dyer).
6) Recursively call the algorithm if the plan is not inconsistent.

(Penberthy, 6)

Although UCPOP was novel for its time, a visit today to its website (maintained by the authors at
the University of Washington) shows it is quite outdated. The authors note, "UCPOP is an aging
system - we recommend Sensory Graphplan (SGP) instead. SGP handles a superset of UCPOP

functionality and is much, much faster" (Weld). On the other hand, research by XuanLong
Nguyen and Subbarao Kambhampati in 2000 has shown that quite a few improvements can be
made to UCPOP in particular, and partial-order planning in general.

Nguyen and Kambhampati argue that "the prevailing pessimism about the scalability of partial
order planning (POP) algorithms" is perhaps unwarranted (Nguyen, 1). The pair appear to regret
that research on POP algorithms seemed to stop (around 5 years prior) and make that point that
advances in "heuristic state space planners … and CSP-based planners" like Graphplan are
perhaps "(mis)interpreted as establishing the supremacy of state space and CSP-based
approaches over" those of the POP variety (Nguyen, 1).

As evidence of their claim, they created RePOP, which is a partial-order planner based on
UCPOP. But the value of RePOP lies in the authors' "key insight … that the techniques
responsible for the efficiency of the currently successful planners … can also be adapted to
dramatically improve the efficiency of the POP algorithm" (Nguyen, 1).

The techniques they applied to RePOP that other strategies had applied, "distance based
heuristics, disjunctive representations for planning constraints and reachability analysis," led to
outstanding results in "several 'parallel planning' domains" (Nguyen, 6). In fact, since in general
partial ordered planners are more flexible than their CSP counterparts, they obtained greater
flexibility than Graphplan, while also outperforming it in most of their experiments (Nguyen, 5-
6). The performance increase wasn't slight, however - in one problem that RePOP took less than
3 seconds to solve, Graphplan labored for 47 minutes. On average, when GraphPlan could solve
a problem within 3 hours or without using all 250 MB of memory, it still took around 10 times
longer than RePOP to find a solution (Nguyen, 5).

The systems described above have a common link in that they are all focused on generic
problems. However, it should be noted that in some domains, such as medicine, planners of
these sorts do not tend to work well. As a consequence, great improvements – in performance
and in accuracy – can be made by building a planner that can be supplemented with domain-
specific information (Miksch). Despite the interesting nature of such systems, covering planners
of that sort is outside the scope of this paper, and I now turn to the second task of this report –
building a partial order planner in Ruby.

Constructing a POP Domain Specific Language in Ruby

Our goal is to give commands to the partial order planner, telling it what the goal is, the initial
state (if it exists), and actions it can perform. The actions contain the name of the action, any
preconditions that must be fulfilled before that action can be performed, and a set of effects the
action has on the world state. After giving this information to the planner, it should output a plan
on demand if one exists.

For simplicity's sake, I've used a STRIPS-like notation, without the complexity of existentially or
universally quantified variables, among other simplifications. Further, only one possible plan is
returned, rather than attempting to find all plans. The one returned is not guaranteed to be
optimal, though (inadequate) tests have shown that it is correct. Plans are to improve these

limitations in the future, moving to a less restrictive ADL syntax, and adding support for
returning multiple plans.

In the meantime, the first task is to allow a user to enter commands in a syntax that looks like:

PlanName("Put on Shoes")
Goal(:RightShoeOn ^ :LeftShoeOn)

Action(:RightShoe, EFFECT => :RightShoeOn, PRECOND => :RightSockOn)
Action(:RightSock, EFFECT => :RightSockOn)
Action(:LeftShoe, EFFECT => :LeftShoeOn, PRECOND => :LeftSockOn)
Action(:LeftSock, EFFECT => :LeftSockOn)

Code Sample 1

Also, it should allow function-like notation, such as:

PlanName("Change Tire")
Init(At(:Flat,:Axle) ^ At(:Spare,:Trunk))
Goal(At(:Spare,:Axle))

Action(Remove(:Spare,:Trunk),
 PRECOND => At(:Spare,:Trunk),
 EFFECT => NotAt(:Spare,:Trunk) ^ At(:Spare,:Ground))
Action(Remove(:Flat,:Axle),
 PRECOND => At(:Flat,:Axle),
 EFFECT => NotAt(:Flat,:Axle) ^ At(:Flat,:Ground))
Action(PutOn(:Spare,:Axle),
 PRECOND => At(:Spare,:Ground) ^ NotAt(:Flat,:Axle),
 EFFECT => NotAt(:Spare,:Ground) ^ At(:Spare,:Axle))
Action(:LeaveOvernight,
 EFFECT => NotAt(:Spare, :Ground) ^ NotAt(:Spare,:Axle) ^
 NotAt(:Spare,:Trunk) ^ NotAt(:Flat,:Ground) ^
 NotAt(:Flat,:Axle))

Code Sample 2

The domain described in Code Sample 1 should produce a plan such as: LeftSockà
LeftShoeà RightSock à RightShoe and RightSockà LeftSockà LeftShoeà
RightShoe. As one can surmise from looking at the domain as it is written, any plan where the
socks are on before the shoes is sufficient.

On the other hand, the domain given in Code Sample 2 should render plans like
Remove(Flat,Axle) à Remove(Spare,Trunk) à PutOn(Spare,Axle), switching
the first two actions depending on which it decides to do first (since either one would work).

Implementing (or allowing) such syntax in Ruby turns out to be simple. To get the conjunction
operator ^, we simply define a module with ^ as a method, and include that module in Ruby's
String, Symbol, and Array classes, since we'll be using each of these as symbols in our "new"
language (See Code Sample 3).

module Logic
 def ^(condition)
 [self, condition]
 end
end

#modify the symbol class to include the ^ operation
class Symbol
 include Logic
end
#modify the array class to include the ^ operation
class Array
 include Logic
end

#modify the string class to include the ^ operation
class String
 include Logic
end

Code Sample 3

Next, we need to allow the use of function-style symbols, such as Remove(:Spare,:Trunk). As
with most things in Ruby, this is also simple. We just use the method_missing method in our
module:

when the user enters a function, turn it into an action
def method_missing(method_id, *args)
 symbol_name = "#{method_id}("
 args.each { |arg| symbol_name += arg.to_s + "," }
 symbol_name[0,symbol_name.length-1] + ")"
end

Code Sample 4

We now have the ability to use the syntax we laid forth in Code Samples 1 and 2 to define our
problems that need planning. All that remains are to implement the functions in our "language"
that allow us to define the problem domain, and an algorithm to solve for plans.

To do so, first we initialize the start state with an Init() function that simply stores the
conditions it is passed. Similarly, the goal state and initial open preconditions are stored into

member variables as they are passed via the Goal() method. Finally, actions are constructed
from a name and a hash with keys PRECOND and EFFECT (See Code Sample 5).

#constants to use to store hash for precondition and effect
#(only for purposes of keeping the DSL looking close to the original)
PRECOND = :precondition
EFFECT = :effect

#store the start-state conditions
def Init(conditions)
 @start_state = conditions
end
alias init Init

#store the goal defined by the user
def Goal(conditions)
 @goal = conditions
 @open_preconditions = @goal
end
alias goal Goal

store actions defined by the user
def Action(name, precondition_effect)
 action= ["name" => name,
 "precondition" => precondition_effect[PRECOND],
 "effect" => precondition_effect[EFFECT]]
 @actions = [] if !@actions
 @actions = @actions + action
end
alias action Action

Code Sample 5

Finally, we come to the meat of the problem, the partial-order planning algorithm. The
algorithm itself follows a fairly simple path:

1) From the list of open preconditions, choose one.
2) Find an action whose effect is the same as the precondition we chose and add it to the

plan.
3) Add to the list of preconditions any requirements for that action.
4) Remove from the list of preconditions any that match the effects for the chosen action.
5) Repeat steps 1-4 until the set of open preconditions is empty, or no action that satisfies a

precondition can be found.
6) Remove any preconditions from the open list that match the starting state.
7) If the set of open preconditions is empty, return the plan. Otherwise, fail.

The algorithm in Ruby follows:

def make_plan
 action_plan = []
 fail = false
 while (@open_preconditions.size > 0 && !fail)
 #randomize the open_preconditions and actions to show order
 #doesn't matter
 @open_preconditions=@open_preconditions.sort_by { rand }

 #find an action that solves it the first open precondition
 attempted_precondition = @open_preconditions.shift
 action_to_take = find_action_for attempted_precondition

 if (action_to_take != nil)
 add_preconditions_for action_to_take
 remove_preconditions_fulfilled_by action_to_take
 #add the action to the plan
 action_plan.push(action_to_take["name"])
 else
 #put the precondition back on the open_preconditions, since
 #it wasn't fulfilled by an action
 fail = true if @open_preconditions.size == 0
 @open_preconditions.push attempted_precondition
 remove_preconditions_matching_start_state
 fail = false if @open_preconditions.size == 0
 end
 end
 if @open_preconditions.size > 0 || fail
 puts "There appears to be no plan that satisfies the problem."
 puts "Open preconditions: "
 puts @open_preconditions
 action_plan = []
 end
 sanitize_plan(action_plan.reverse)
end

Most of the code is aptly named where there are functions (see the appendix for the complete
code), but two issues in this algorithm immediately jump to the forefront. The first is: why aren't
we also randomizing the list of actions? Clearly, if there are two actions that satisfy the same
precondition, the first one encountered will always win. This was done because randomizing the
list of actions (if two or more satisfy the same precondition) has the potential to cause a loop of
preconditions/effects, and thus cause incorrect plans to be generated. Since no attempt was made
at finding the optimal plan, I didn't want to clutter the code by fixing this and make it harder to
follow. Correct plans are still generated, and a future version meant for more demanding
environments would indeed allow a random action to be chosen.

The second issue that is not immediately clear begs the question: "just what is that
sanitize_plan method doing there?" Some actions may add duplicate preconditions to the set
of open preconditions. The algorithm as it stands allows this to happen for readability purposes,
and simply cleans up the plan later with the sanitize_plan function.

Finally, it is also clear that a more "elegant" solution may have been to take actions as functions,
which receive preconditions as their parameters, and whose output are effects. The thought of
such an implementation is interesting and worthy of exploration, though time constraints
prevented me from doing so in this case.

As mentioned above, a complete version of the code and three tests can be found in the
appendix.

Conclusion

First a definition of planning was introduced. In a nutshell, it is "the task of coming up with a
sequence of actions that will achieve a goal" (Russell, 375). That much was obvious. We then
described two forms of linear, or totally ordered, planning - progression and regression planning
through forward and backward state-space search, respectively. Having something to contrast
with, the definition of partial order planning became clear, as did its advantages: it is able to
exploit problem decomposition, and in doing so, work on several subgoals before arriving at a
complete plan.

Then, a long selected history of partial order planning was described. First, Sussman's anomaly
was introduced, as it was the impetus behind the design of the first non-linear planners.
Sussman's anomaly showed how a simple problem could not be solved by traditional total-order
planners, while Austin Tate's INTERPLAN and Sacerdoti's NOAH system were two of the first
to do so, using non-linear plans.

Tate recognized some flaws in NOAH, in that it could not backtrack (similar to my own
implementation) in case of following an incorrect path, and to solve that problem, he created
NONLIN. David Chapman's TWEAK came in 1985, and it was the first formalization of a
partial-order planner, which led to SNLP, the first complete and readable one. UCPOP soon
followed, and it broke out of the realm of STRIPS and into the richer, more descriptive language
ADL.

After UCPOP, research in the field seemed to die off until Nguyen (et al) showed how their
system, RePOP, could defeat Graphplan by using many of the heuristics that graph planners were
using. It was important because that seemed to be considered undoable by a partial order planner
at the time.

Finally, we saw how a simple partial order planning DSL could be implemented in Ruby.

Appendix A - Complete code of rubypop.rb and rubypop_test.rb
rubypop.rb

module Logic
 def ^(condition)
 [self, condition]
 end
end

#modify the symbol class to include the ^ operation
class Symbol
 include Logic
end
#modify the array class to include the ^ operation
class Array
 include Logic
end

#modify the string class to include the ^ operation
class String
 include Logic
end

the pop module
module RubyPOP
 #constants to use to store hash for precondition and effect
 #(only for purposes of keeping the DSL looking close to the original)
 PRECOND = :precondition
 EFFECT = :effect

 #store the start-state conditions
 def Init(conditions)
 @start_state = conditions
 end
 alias init Init

 # store actions defined by the user
 def Action(name, precondition_effect)
 action= ["name" => name,
 "precondition" => precondition_effect[PRECOND],
 "effect" => precondition_effect[EFFECT]]
 @actions = [] if !@actions
 @actions = @actions + action
 end
 alias action Action

 #store the goal defined by the user
 def Goal(conditions)
 @goal = conditions
 @open_preconditions = @goal
 end
 alias goal Goal

 def PlanName(name)
 @plan_name = name

 end

 def output_actions
 @actions.each do |x|
 puts
 puts "name: " + x["name"].to_s
 puts "precondition: " + x["precondition"].to_s
 puts "effect: " + x["effect"].to_s
 end
 end

 def clear
 @actions = []
 @goal = nil
 @open_preconditions = nil
 @plan_name = nil
 end

 # when the user enters a function, turn it into an action
 def method_missing(method_id, *args)
 symbol_name = "#{method_id}("
 args.each { |arg| symbol_name += arg.to_s + "," }
 symbol_name[0,symbol_name.length-1] + ")"
 end

 def print_plan
 puts "One possible plan for #{@plan_name}: "
 puts get_plan
 end

 def get_plan
 return sanitize_plan(make_plan)
 end

 private
 def find_action_for(cond)
 @actions.each do |action|
 if action["effect"].class == Array
 action["effect"].each { |effect| return action if
effect.to_s == cond.to_s }
 else
 return action if action["effect"].to_s == cond.to_s
 end
 end
 return nil
 end

 def remove_preconditions_matching_start_state
 @open_preconditions.each do |cond|
 @open_preconditions.delete(cond) if
@start_state.index(cond)
 end
 end

 #if there were some actions that duplicated precondition, it will cause
a loop in plan.
 #this function cleans that up by analyzing the current state and

removing unnecessary actions
 #a better implementation might make a graph of the actions and check
that before putting them in
 def sanitize_plan(plan)
 current_state = []
 #should be examining the effects individually, since it may end
up choosing two with the same effect
 #but not currently doing so
 plan.each { |action| current_state.push(action) if
!current_state.index(action) }
 return current_state
 end

 def make_plan
 action_plan = []
 fail = false
 while (@open_preconditions.size > 0 && !fail)
 #randomize the open_preconditions and actions to show order
doesn't matter
 @open_preconditions=@open_preconditions.sort_by { rand }
 @actions = @actions.sort_by { rand } #---- causes bugs
right now?

 #find an action that solves it the first open precondition
 attempted_precondition = @open_preconditions.shift
 action_to_take = find_action_for attempted_precondition

 if (action_to_take != nil)
 add_preconditions_for action_to_take
 remove_preconditions_fulfilled_by action_to_take
 #add the action to the plan
 action_plan.push(action_to_take["name"])
 else
 #put the precondition back on the open_preconditions,
since it wasn't fulfilled by an action
 fail = true if @open_preconditions.size == 0
 @open_preconditions.push attempted_precondition
 remove_preconditions_matching_start_state
 fail = false if @open_preconditions.size == 0
 end
 end
 if @open_preconditions.size > 0 || fail
 puts "There appears to be no plan that satisfies the
problem."
 puts "Open preconditions: "
 puts @open_preconditions
 action_plan = []
 end
 sanitize_plan(action_plan.reverse)
 end

 #add the preconditions for this action if they don't already exist
 def add_preconditions_for(action)
 preconditions = action["precondition"]
 if preconditions.class == Array
 preconditions.each { |precondition|
@open_preconditions.push(precondition) if (precondition != nil &&

!@open_preconditions.index(precondition)) }
 else
 @open_preconditions.push(preconditions) if (preconditions
!= nil && !@open_preconditions.index(preconditions))
 end
 end

 # remove any open preconditions which the action fulfilled
 def remove_preconditions_fulfilled_by action
 action["effect"].each do |effect|
 @open_preconditions.each { |precon|
@open_preconditions.delete(precon) if precon.to_s == effect.to_s }
 end
 end

end

rubypop_test.rb

require 'rubypop'
include RubyPOP

PlanName("Put on Shoes")
Goal(:RightShoeOn ^ :LeftShoeOn)

Action(:RightShoe, EFFECT => :RightShoeOn, PRECOND => :RightSockOn)
Action(:RightSock, EFFECT => :RightSockOn)
Action(:LeftShoe, EFFECT => :LeftShoeOn, PRECOND => :LeftSockOn)
Action(:LeftSock, EFFECT => :LeftSockOn)

print_plan
clear
puts

PlanName("Change Tire")
Init(At(:Flat,:Axle) ^ At(:Spare,:Trunk))
Goal(At(:Spare,:Axle))

Action(Remove(:Spare,:Trunk),
 PRECOND => At(:Spare,:Trunk),
 EFFECT => NotAt(:Spare,:Trunk) ^ At(:Spare,:Ground))
Action(Remove(:Flat,:Axle),
 PRECOND => At(:Flat,:Axle),
 EFFECT => NotAt(:Flat,:Axle) ^ At(:Flat,:Ground))
Action(PutOn(:Spare,:Axle),
 PRECOND => At(:Spare,:Ground) ^ NotAt(:Flat,:Axle),
 EFFECT => NotAt(:Spare,:Ground) ^ At(:Spare,:Axle))
Action(:LeaveOvernight,
 EFFECT => NotAt(:Spare, :Ground) ^ NotAt(:Spare,:Axle) ^
NotAt(:Spare,:Trunk) ^ NotAt(:Flat,:Ground) ^ NotAt(:Flat,:Axle))

print_plan

clear
puts

PlanName("Watch Fulham beat Chelsea")
Init(Asleep(:Sam))
Goal(In(:Sam,:Pub) ^ Watching(:Sam,:FulhamBeatChelsea))
Action(WakeUp(:Sam),
 PRECOND => Asleep(:Sam),
 EFFECT => Awake(:Sam))
Action(Bathe(:Sam),
 PRECOND => Awake(:Sam),
 EFFECT => Clean(:Sam))
Action(Shower(:Sam),
 PRECOND => Awake(:Sam),
 EFFECT => Clean(:Sam))
Action(Dress(:Sam),
 PRECOND => Clean(:Sam),
 EFFECT => Dressed(:Sam))
Action(Work(:Sam),
 PRECOND => Clean(:Sam) ^ Dressed(:Sam),
 EFFECT => IsAbleToGoToPub(:Sam))
Action(GoToPub(:Sam),
 PRECOND => IsAbleToGoToPub(:Sam),
 EFFECT => In(:Sam,:Pub))
Action(Watch(:Sam,:Fulham),
 PRECOND => In(:Sam,:Pub),
 EFFECT => Watching(:Sam,:FulhamBeatChelsea))
print_plan

References
Chapman, David. "Planning for Conjunctive Goals." Massachusetts Institute of Technology.
1985. Available online from MIT at http://dspace.mit.edu/handle/1721.1/6947?mode=full

Dyer, C.R. "Partial-Order Planning: Chapter 11." CS 540 Lecture Notes. Retrieved on the
World Wide Web on 4/24/2007 from http://www.cs.wisc.edu/~dyer/cs540/notes/pop.html.

Figure 1: Retrieved on the World Wide Web on 4/20/2007 from
http://www.cs.cardiff.ac.uk/Dave/AI2/sussman.gif and verified in Russell and Sacerdoti.

Miksch, Silvia. "Plan management in the medical domain." AI Communications 12, pp 209-
235. 1999.

Nguyen, XuanLong and Kambhampati, Subbarao. "Reviving Partial Order Planning." 2000.
Retrieved on 4/20/2007 from http://rakaposhi.eas.asu.edu/ucpop-revive.pdf on the World Wide
Web.

Penberthy, J. Scott and Weld, Daniel S. "UCPOP: A Sound, Complete, Partial Order Planner for
ADL." Third International Conference on Principles of Knowledge Representation and
Reasoning, pp. 189-197. Cambridge, MA.

Russell, Stuart and Norvig, Peter. Artificial Intelligence: A Modern Approach 2nd Edition. New
Jersey: Pearson Education, 2003.

Sacerdoti, Earl D. "The Nonlinear Nature of Plans." 1975. Proceedings of the Fourth
International Joint Conference on Artificial Intelligence. Retrieved on 4/20/2007 from
http://dli.iiit.ac.in/ijcai/IJCAI-75-VOL-1&2/PDF/028.pdf on the World Wide Web.

Tate, Austin [A]. "INTERPLAN: a plan generation system which can deal with interactions
between goals" Research Memorandum MIP-R-109, Edinburgh: Machine Intelligence Research
Unit, December 1974. (Can be found online at
http://www.aiai.ed.ac.uk/project/oplan/documents/1990-PRE/1974-mip-r109-tate-interplan.pdf)

Tate, Austin [B]. "Generating Project Networks", Proceedings of the Fifth International Joint
Conference on Artificial Intelligence (IJCAI-77) pp. 888-893, Boston, Mass. USA, August 1977.
(Can be found online at http://www.aiai.ed.ac.uk/project/oplan/documents/1990-PRE/1977-ijcai-
tate-generating-project-networks.pdf)

Weld, Dan and Penberthy, Scott. "The UCPOP Planner." Retrieved on the World Wide Web on
4/19/2007 from http://www.cs.washington.edu/ai/ucpop.html.

